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ABSTRACT
The significant advances in the Internet of Things (IoT) have led
to IoT applications being widely used in various scenarios ranging
from smart city, smart farming, to Industrial IoT (IIoT) solutions.
With the explosion of IoT application development, IoT middle-
ware platforms are increasingly being used for hosting such IoT
applications. This has given rise to the need for developing bench-
marking solutions to analyze and test the performance of different
middleware platforms that host these IoT applications. To develop
such benchmarks, there are a number of key components that are
needed. One of these components is an IoT dataset. To generate such
datasets, representing IoT application requirements in a general
and formal way is important. In this paper, we propose a frame-
work to model the IoT Applications Requirements and enable Data
Generation(ARDG-IoT). The framework supports a formal way to
capture IoT application requirements and use these requirements to
generate IoT data that can be used to create benchmarks for differ-
ent IoT middleware platforms. ARDG-IoT consists of our proposed
model, IoTSySML, which captures the application requirements,
and an IoT data simulator tool, which is used to generate IoT data.
We present an evaluation of the framework using a real world
Industrial IoT application case study.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Software Engineering→ Object Oriented Language; UML.
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1 INTRODUCTION
IoTmiddleware platforms are increasingly being used to host IoT ap-
plications to ease the application development process. The current
research trend shows that themarket for IoTmiddleware is expected
to reach a value of USD 22.36 billion by 2025 [24]. IoT middleware
platforms such as Microsoft Azure, FIWARE [3], Cumulocity[5], to
name a few, are now hosting a greater number of IoT applications
providing the capability to manage IoT devices, store, and process
the data generated from these devices. The performance of IoT
applications depends on the middleware platform and ability to
understand its capabilities in hosting the IoT application. Bench-
marking has been traditionally employed to establish a standard
way to assess the performance of systems that can be used to help
make suitable choices. While benchmarking in areas like databases,
big data, and stream processing are well established, the differences
in characteristics of IoT applications from those of conventional
database and similar systems makes developing benchmarking so-
lutions for IoT systems difficult. As an example, factors like the
heterogeneity of IoT devices, complex network structures and pro-
tocols, the need to support various data analytics requirements
(from simple statistics to complex machine learning), etc makes it a
challenging task to develop solutions that provides a mechanism
to conduct benchmarks of IoT middleware platforms.

1.1 Motivating Scenario
Consider the following motivation scenario of a manufacturing
or Industrial IoT (IIoT) solution [13] which aims to improve the
productivity of the factory workers in a meat processing plant
using data captured from wearable IoT devices. The performance of
each individual worker is evaluated using activity recognition. The
factory workers are equipped with wearable watch-like IoT devices
called MetaWear that record accelerometer and gyroscope data.
The motion data is analyzed using machine learning algorithms
hosted in the cloud based IoT platform and classifies the activities
of each worker.

This scenario has several challenges. The first challenge reflects
the complexity of IoT ecosystem in terms of the heterogeneity of
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the different components it encompasses (devices, network, com-
munication protocols). Additionally, such IoT applications have re-
quirements which are different from those of conventional database
systems. Furthermore, data generated by IoT devices is character-
ized by high velocity and dynamicity, which makes it different from
conventional datasets (which is more static). Hence, getting access
to such datasets or generating similar data to support benchmark-
ing and analyzing the performance of different IoT middleware is
a challenge and impedes IoT application development and deploy-
ment.

Being able to generate IoT data pertinent to the application
requirements is a key to be able to conduct performance benchmark
of IoT middleware platform. A first step towards this is to be able
to capture and represent the IoT application requirements which
then provides a standard way to generate IoT data for the given
application. This enables repeatable data to be generated while
conducting performance benchmarks of IoT middleware. There is
limited work in the literature that focuses on capturing the diverse
IoT application requirements and use this to generate IoT data
relevant to the IoT application. To address this gap, we propose
IoTSySML, a system modelling language-based approach to elicit,
capture and represent the requirements of IoT applications.We have
also developed ARDG-IoT, a framework that can be used to generate
data considering the captured application requirements captured
by IoTSySML. The goal is to describe the application requirements
and generate IoT data which can later be used to create benchmarks
for different IoT middleware platforms. We evaluate the proposed
methodology using our motivating scenario.

Our main contributions in this paper are:
(i). Identifying requirements of IoT applications and proposing a
model-based approach to represent these requirements. This study
will be significant for other related research in better understanding
of common needs and requirements of IoT applications.
(ii). A framework which captures the application requirements to
generate data that can be used for benchmarking across different
middleware platforms
(iii). Experimental implementation and evaluations to validate the
proposed framework and show that IoT data is being generated
according to the application requirements. We implement our pro-
posed framework using an Industrial IoT solution.

With our proposed framework, we are providing an easy-to-use
approach where IoT application developers who want to host their
IoT application on middleware platforms, can use the IoTSySML
model to specify their requirements for generating their datasets,
and run it across multiple platforms for conducting benchmarks.
The rest of the paper is organized as follows: section 2 introduces
the architecture and design of the ARDG-IoT framework, section 3
illustrates its implementation. Section 4 presents the experimental
evaluation of the framework and reports the results. Section 5
discusses the related work, and section 6 concludes the paper with
a roadmap for future work.

2 ARDG-IOT FRAMEWORK
In this section we describe our proposed framework - ARDG-IoT.
Figure 1 illustrates the key elements of the ARDG-IoT framework.

It consists of the proposed IoTSySML model to capture and repre-
sent the IoT application requirements, an application description
generator, a data generation tool, and a monitoring engine that
monitors the performance of the IoT middleware platform hosting
the IoT application. In the subsequent subsections, we describe each
of these components.

Figure 1: Architecture of the ARDG-IoT framework

2.1 IoTSySML: Modelling IoT Application
Requirements

IoT applications can be applied to various domains like smart
traffic [11], smart manufacturing[13], smart parking[15], smart
agriculture[17], and many more. IoT applications have require-
ments which are versatile and different from the traditional web
applications. Hence, to capture these diverse set of requirements,
it is essential to first study and identify the characteristics of IoT
applications in various domains. Currently, there is a lack of sys-
tematic approaches for determining and identifying the different
IoT applications requirements. As a first step in that direction, we
propose IoTSySML, to capture the IoT application requirements.
The model has been developed using SysML[1] which is a domain
specific and platform independent graphical language especially de-
signed for the field of Model Based System Engineering (MBSE)[14].
SySML uses Stereotypes, Tagged Values and Constraints1 to provide
extensions to existing concepts.

We have followed the below steps to develop the model for cap-
turing the requirements of IoT applications:
(1). An in-depth analysis of a wide range of existing IoT applications
across various domains.
(2). Identifying the attributes for each of these requirements (e.g.,
Sense Rate, Data Interval, Sampling Frequency for IoT sensor device
requirements)
(3). Identifying the relationship and dependencies between the en-
tities (association/composition)
(4) Determining the multiplicity (one-to-many, many-many)

1https://www.uml-diagrams.org/profile-diagrams.html
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Figure 2: IoTSySML:A Model for Capturing IoT Application Requirements

Wemodel the IoT device requirements of IoT applications from a
benchmarking perspective. Our model has been developed after an
extensive analysis of the literature of IoT applications across various
domains[11][13][17][15] and research on the field of requirements
engineering[19][9][10][18][20]. IoTSySML is also based on con-
cepts from IoTLite[22] and SOSA Ontology[23]. IoTSySML is a
lightweight extension of SySML and uses UML profiling to capture
the IoT application requirements. The model has been conceived us-
ing the SySML Block Definition Diagram (BDD) illustrated in Figure
2. Each concept has been encapsulated using a ’block’. Each block is
a stereotyped (customized) extension of a UML Class and has a set
of properties and defined relation with other blocks. The ’IoT Appli-
cation’ block is stereotyped as << IoTStack >> and interacts with
the ’IoT Devices’ block. We show the model element property like
multiplicity property for the blocks. Multiplicity properties can be 0
to many, one to many, many to many, etc. For example, IoT applica-
tions share a many-to-may relationship with IoT devices shown in
the figure. Similarly, IoT devices can have multiple sensors which is
shown by one-to-many relationship between the ’IoT devices’ and
’Sensors’ block. We also show a composition relationship between
’IoT Devices’ and ’Sensors’ block. Composition relationships are
denoted by a solid line with a solid diamond at the end of a com-
position. IoT devices leverage different ’Communication Protocols’

to send the data to IoT middleware platforms. They also have a
’Publish Frequency’ requirement which denotes the rate at which
the sensed data is required to send the data to the edge devices or
cloud services. Different frequencies for publishing data should be
supported. Sensors may send multiple values in one second or one
value in four hours.

IoT devices also have ’Number of Instances’ which indicate the
number of sensors for which data has to be generated. Sensors
are stereotyped as << IoTDevices >> and can make ’Observa-
tions’ having attributes ’Values’ and ’Phenomenon Time’ which
are stereotyped as ’Sensor Observations’. The property ’Values’ is
the data generated by the sensors, for example, acceleration values
generated by accelerometer or temperature values generated by
temperature sensors. The property ‘Phenomenon Time’ is the exact
time instant in which the data is being generated by the sensors.
’IoT Devices’ block has static attributes like device id, deployment
location, and quantity kind. Device id is the unique identification for
each device,deployment location is the geographic locations where
the devices are deployed. We are considering the location static for
this research. The quantity kind determines the type of value that is
being sensed. For example, the quantity kind is acceleration for our
motivating scenario. The ’IoT Sensor Device Requirements’ block
stereotyped <<Requirements >> consists of Sense Frequency, Data
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Figure 3: ARDG-IoT Framework Implementation.

Range, and Sampling Frequency. They have a shared aggregation
relationship. Sense frequency[10] describes how often the data is
being generated. For example, a temperature sensor may generate
data every second whereas health vitals from patients can be gener-
ated every couple of minutes. Sampling frequency[16] refers to the
number of data points required per second. Sampling Frequency
can be calculated as 1/(SF)SenseFrequency. Some applications like
stock market analysis might require higher sampling frequency
whereas other applications might not require a higher sampling
frequency. Data range defines the range in which the sensor data
points would lie. For example, in the example of our motivating
scenario, if the value of acceleration along the x-axis lies in the
data range [-0.2, 0.6], it denotes an activity of hand movement, e.g.,
lifting of hand.

2.2 Application Description Generator
The application description generator component in Figure 1 is in
charge of taking the IoT application requirements from IoTSySML
and converting it into an input template for the data generation
tool. The application requirements captured by IoTSySML needs to
be parsed by this component to a template which can be provided
as an input to the IoT data simulator.

2.3 Data Generation Tool
This component is responsible for generating IoT data according
to the captured requirements. IoT applications might have varying
requirements for data generation. Some applications might require
data to be generated more frequently than others. For example,
a traffic monitoring application[11] might require data to be gen-
erated every few seconds to get the real-time location and speed
information of vehicles. A smart farming application[17] on the
other hand, might require data from soil sensors every few min-
utes. For our motivating scenario, to detect high-level activities of
meat processing workers like working with meat or waiting for
meat, low-level sensor data (e.g., accelerometer data or gyroscope
data) should be generated which can represent activities like the

direction of the hand movement. The generated data can then be
reasoned into activities like grabbing a piece of meat or cutting
large chunks of meat into smaller pieces. To compute such activities
of the workers, the analysis algorithm might require data every
minute. To provide data to the application at this frequency, the
data should be generated at the required rate which is taken care
of by this component.

2.4 Monitoring Engine
This component is responsible for providing real-time information
of the generated data being received on the cloud. It monitors the
incoming number of messages, incoming number of requests, and
the number of successful requests. It also keeps a record of the
obsolete message requests, failed requests, etc. Some of the tools
that can be used for this purpose is CLAMS[8], which may be
deployed across multiple IoT middleware platforms.

3 ARDG-IOT FRAMEWORK -
IMPLEMENTATION

Figure 3 shows the workflow and the technology stack used for
implementing the proposed framework. We start by modelling the
IoT application use-case scenario. Based on the proposed generic
IoTSySML model in Figure 2, we have developed an instance of the
use-case.We have used Visual Paradigm tool[6] since it supports the
generation of the XML specification document, which needs to be
converted into a format understandable by the IoT data simulator.

This is done by the application description generator which
consists of two components: the XML parser and the JSON parser.
The XML parser first receives the IoT application requirements
from IoTSySML as an XML specification document and parses it
to intermediate JSON using a PowerShell script, which is accepted
as the input of the JSON Parser. The JSON Parser now reads the
JSON file and generates a template that interacts with the IoT data
simulator and contains all the details needed to create sessions
to start generating the data. This has been implemented using
Node.js and JavaScript. The outcome of the application description
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Figure 4: Block Definition Diagram of the IoT Application Requirements of the Meat Processing Application.

generator is a session template which can be uploaded to the data
generation tool to generate IoT data. The IoT-data-simulator[2] tool
was used to generate data relevant for our IoT application. It is an
open-source tool and provides two options to generate data: we
can either create a schema to define the data structure of the data
to be generated or we can opt for a schema-less data generation
which can be implemented using JavaScript. There are some basic
concepts that are required to use the tool. The core entity of the IoT
data simulator is a session. The simulator relies on these sessions
to generate the data. The second core concept is data definition
which is used to define a schema to represent the data structure we
are working with. We first create a session and then define schema
using data definitions. We can also add multiple devices and send
the data to different target systems. The communication protocols
currently supported are AMQP, MQTT, REST, Web sockets and
HTTPS. The IoT data simulator is written in java, hence, it was
convenient to generate the session template using JavaScript and
Node.js. The IoT middleware platforms that have been used to send
the generated data are FIWARE[3] and Amazon Web Service (AWS).

We establish a connection to FIWARE platform through REST API
and to AWS through MQTT protocol.

Additionally, we have automated the session creation process of
the IoT data simulator which is currently done manually. Earlier, ev-
ery time we wanted to generate data with a given set of application
requirements, we needed to create a session, define schemes, data
definition, etc. As a part of the implementation, to speed up things
and avoid the manual process, we have implemented a component
which receives the application requirements from the IoTSySML
model, generates a template, which can directly be uploaded to the
tool to create the sessions. Furthermore, to eliminate the need to
upload the generated template to create sessions, we have enabled
session creation through HTTP requests. We used Node.js.Axios
to send asynchronous HTTP requests to the REST endpoints. So,
currently, we can send HTTP requests from the browser to create
the sessions automatically.

4 EXPERIMENTAL EVALUATION
This section presents the evaluation of the proposed ARDG-IoT
framework. Our evaluation consists of two parts. First is a case study
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based evaluation, where we show that our proposed IoTSySML
model can capture the requirements for our motivation scenario.
Second, we demonstrate how an IoT application developer can
use the proposed framework to conduct performance analysis on
different IoT middleware platforms.

4.1 Case Study Based Evaluation
To evaluate IoTSySML, we discuss the application requirements of
our motivating scenario discussed in section 1.1. The application
monitors the productivity of workers by detecting their activity in
a meat processing plant. We have captured the application require-
ments using the proposed IoTSySML. Figure 4 illustrates a SySML
Block Definition Diagram (BDD) of the captured application device
requirements.

In our scenario, the IoT application interacts with IoT devices
which are wearable watch like devices called Metawear with ac-
celerometer and gyroscope sensors. We assume we have 10 workers
wearing the metawear devices on both wrists. This information
is captured by the ’Number of Instances’ block in Figure 4. We
provide this captured information to the IoT data simulator, which
starts generating data for twenty devices. In this use-case, we have
considered accelerometer sensor data for detecting the movement
of hands. We specified a set of requirements to detect activities of
workers in a meat processing plant. Static requirement of devices:
device id, location and quantity kind which has been set to specific
values. The IoT sensor device requirement, ’Sense Frequency’, has
been set to a value of 2 seconds, which means that the accelerome-
ter sensor is required to generate data every 2 seconds. The ’Data
Range’ for the acceleration values has been specified along the x, y,
and z axis. Finally, we specify the required ’Sampling Frequency’.
The ’Accelerometer Sensor’ makes ’Observations’ which are accel-
eration values along the x, y, and z axes and the time instant in
which the accelerator data is generated in milliseconds precision.
These acceleration values that are generated for the application
represent data relevant to some activity performed by the workers.

4.2 Evaluating ARDG-IoT
In this section we discuss the designed experiments to validate our
proposed framework and its ability to generate relevant IoT data
for conducing benchmarks based on IoT application requirements
captured by the IoTSySML model. Let us assume, an IoT application
developer of the above case study(section 4.1) wants to conduct a
data ingestion and query performance analysis on different IoT plat-
forms. To achieve this, we have conducted two sets of experiments
on two IoT middleware platforms. We have chosen one open-source
and one commercial platform for our experiment.

4.2.1 Experimental Set up. The experiments were conducted on
two different IoT middleware platforms: FIWARE and AWS. Data
was generated using the IoT data simulator. FIWARE and IoT data
simulator were deployed using Docker on a system with 1.8 GHz
Dual-Core Intel Core i5 processor, 16GB RAM, running MAC OS
(Operating System).

The first set of experiments are run on AWS to evaluate the data
ingestion performance. We leveraged the "IoT core" managed cloud
service provided by AWS IoT to register our devices for data to be
ingested into the middleware platform. We first register our IoT

devices on AWS Cloud and establish a secure connection with the
IoT data simulator over port 8883. We then run our data generation
component to generate data and ingest the data into the middle-
ware platform. The proposed IoTSySML allows users to select their
preferred communication protocol for data ingestion. We used the
MQTT communication protocol to connect to AWS IoT. MQTT
uses a high throughput pub/sub message broker and ensures se-
cure transmission from the IoT devices. The two basic operations
associated with MQTT mechanism is publish and subscribe. The
IoT devices publish their data to a particular topic. Anyone who
wants to view or access the data needs to be subscribed to that
particular topic. IoT core was used to subscribe to our MQTT topic
"test/devices". The data in this experiment has been securely sent
using X.509 digital certificates. The certificates were used to estab-
lish a secure MQTT connection with AWS IoT. Authorization and
access have been granted by AWS IAM Roles and Policies.

Similarly, the experiment is run on the FIWARE platform. We
have used the Generic Enabler (GE) Context Broker (CB) to connect
to the IoT data simulator. It is one of the key andmandatorymodules
of FIWARE and implements a Publish/Subscribe paradigm. We have
used HTTP to connect the IoT data simulator to FIWARE. The CB
is implemented through Orion, which is the open-source reference
implementation of the CB Generic Enabler and is based on the
OMI NGSI standard [4]. The FIWARE version of the OMA NGSI
interface is a RESTful API via HTTP. The CB receives the data
generated by the IoT data simulator through the Cygnus connector.
The Orion Context Broker relies on MongoDB technology to stores
the generated sensor data and requests to this service is using NGSI.
The CB is run by making HTTP requests to the exposed ports. After
the data is generated, it is ingested into the FIWARE platform. We
have repeated the experiment on both middleware platforms for
different data ingestion rates and calculated the ingestion delay for
each data ingestion rate.

Now that we have the generated dataset, users (an IoT application
developer) might want to run queries and test the query execution
performance. We have performed the second set of experiments
on FIWARE and AWS to show that the proposed framework can
be used to conduct this performance analysis and provide them
with the results. We have considered two types of queries for this
experiment: simple and complex queries. For the query performance
evaluation on AWS, we used the AWS Service "IoT Rules’ to trigger
queries based on an event. The outcome of the query was stored
on DynamoDB database. For the experiments on FIWARE, once
the data was received on FIWARE, we implemented a FIWARE
event listener using Node.js which evaluated the response time of a
query which is triggered on detection of any event. We connected
to the MongoDb server to fetch the outcome of the queries. We
carried out the experiment with queries of different complexities
and calculated the query response times for each of them. We
have repeated the experiments ten times on both platforms and
have taken the aggregation of the results. The configurations and
metrics are discussed in the next section. The results are illustrated
in section 4.3.

4.2.2 Performance Analysis Configuration and Metrics: We per-
formed the experiment with different configurations to test the



Modelling IoT Application Requirements for Benchmarking IoT Middleware Platforms iiWAS2021, November 29-December 1, 2021, Linz, Austria

session console.png

Figure 5: Session Console of the IoT data simulator showing the generated IoT data

data ingestion and query execution performance of AWS and FI-
WARE.

Data ingestion rate is the rate at which sensor data being in-
serted to a system per second.

Query Complexity is the number of conditions being used in
the queries. We define ’Simple Queries’ as queries with one filter
condition while ’Complex Queries’ as those with multiple filter
conditions’.
We have also identified the following metrics which have been
used by the proposed framework for conducting performance anal-
ysis. The monitoring engine component of our framework has the
capability to measure the following metrics.

Ingestion Delay: Ingestion delay is the time difference between
the time when the data is being generated and the time at which it
is being inserted into the platform.

Query Response Time: By query response time we mean the
time taken to execute a query after it is triggered on detection of
an event.

4.3 Experimental Results
In this section, we report the results of the conducted experiments
to evaluate the framework. The first result illustrates the frame-
works ability to generate data based on the captured application
requirement.

Figure 5 illustrates the generated data using the IoT data simu-
lator. We can see that the IoT data simulator generates a reading
every 2 seconds, which validates our ’Sense Frequency’ require-
ment captured by IoTSySML. It also shows the generated timestamp
and the acceleration values. The accelerometer sensor generates
data as a three valued vector along the x(lateral), y(longitudinal),
and z(vertical) axes.

Figure 6 plots the acceleration values and illustrates that the
acceleration values generated are according to the data range re-
quirement specified in our proposed model.

4.3.1 Data Ingestion. Figure 7 illustrates the data ingestion per-
formance. To illustrate that ARDG-IoT can work with different
configurations and IoT middleware platforms, we report the per-
formance in varying conditions. We compare the delay in the data
ingestion of the two platforms FIWARE and AWS as we vary the
data ingestion rate. The graph indicates that as the data ingestion
rate increases, there is a slight increase in the ingestion delay of
FIWARE, whereas the increase in the ingestion delay of AWS with
the increase in the ingestion rate is more noticeable.

Figure 6: Plot showing the generated acceleration values
along the x, y and z axes

Figure 7: Data ingestion delay of AWS and FIWARE with
varying data ingestion rates

4.3.2 Query Execution Performance. Figure 8 shows the query re-
sponse time of AWS and FIWARE as we vary the complexity of the
query.
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Figure 8: Query response time of AWS and FIWARE with
varying data ingestion rates and complexity of queries

We have performed the experiment with three data ingestion
rates. The graph shows that for a data ingestion rate of 200 data per
second, the query response time of AWS is greater than FIWARE,
whereas for ingestion rates 500 and 1000, the response time of
FIWARE is more than AWS. Overall, the graph shows that, with
the increase in the complexity of the query (as in increase the
number of conditions in the query), there is a slight spike in the
query response time for all the ingestion rates. We have taken the
aggregated values for comparing the query response times.

4.3.3 Analysis. Using the proposed framework, we have described
the IoT application requirements using a system engineering ap-
proach. The focus has been to provide a formal way of representing
the IoT application requirements using our proposed model, IoT-
SySML. To demonstrate that IoTSySML can capture the IoT appli-
cation requirements correctly, we have used the proof-of-concept
implementation of our framework and generated the data with the
application requirements of a real-world IIoT application scenario
as the input.

For the second part of the validation, we have run a set of ex-
periments to illustrate the data generation and ingestion capability
of our proposed framework. The evaluation results showed that
ARDG-IoT can generate IoT data by taking the IoT application re-
quirements as input description. We have ingested the generated
data to two different platforms using different communication pro-
tocols. We have also illustrated that our framework can evaluate the
performance of different platforms based on a set of queries. Once
users have specified their application requirements, the proposed
framework can be used to run a performance analysis on different
platforms and provide themwith the results. For example, in section
4.3, Figure 7 shows spikes in data ingestion delay for AWS platform
as we increase the data ingestion rates while for FIWARE platform
there is a subtle increase. Hence, the proposed framework can be
used to detect this type of occurrences and would allow application
developers to run such experiments easily and investigate if any
issues exist.

During the experiment, we observed other factors which affected
the data ingestion of a middleware platform like the underlying
structure of the dataset and the communication protocol being used.
We can potentially say that the data ingestion depends on the data-
base component being used by the different middleware platforms

to store the data and the communication protocol being used. The
format of generated dataset varies for each middleware platform.
Hence, the complexity of data ingestion of each IoT middleware
platform depends on the data structure of the dataset and the data
model that is supported by the platform. For example, ingesting
the data in FIWARE was more complex to AWS because of the type
of data model supported by FIWARE, where each entity should
have an "id" and "type" property to be properly ingested into the
platform. This is common to all NGSI entities, as well as defining
terms such as "Property" and "Relationship" to describe the dataset.

5 RELATEDWORK
Significant work has been done using UML modelling techniques
by Reggio et al.[19] for IoT systems. The paper proposed IotReq, a
UML based domain modelling method to specify the requirements
for IoT based systems. IotReq consists of a domain model and a
goal paradigm approach for requirement specification. Rohjans et
al.[20] have used IntelliGrid methodology for developing require-
ments for smart grid architectures. The methodology describes
user requirements as use case descriptions. Similarly, another study
[9]introduces a requirement engineering technique based on use
case modelling for requirement specification of smart spaces. The
proposed technique identifies the possible actions in a smart space,
where each action is represented by use-cases. Software engineer-
ing techniques that have been explored for requirements gather-
ing other than UML include ERD and simple block diagrams. [18]
modelled IoT healthcare systems using rich pictures (cartoon-like
drawings based on informal rules) and use cases. Costa et al.[10]
have usedMBSE approach using SySML to specify the requirements
of IoT systems. The paper proposes a modelling language, which is
conceived as a SysML Profile. The use of constraints for IoT systems
have been well depicted.

The existing works [7] on benchmarking IoT middleware plat-
forms have focused on publish/subscribe type of middleware. Two
middleware platforms have been compared based on a set of quali-
tative and quantitative metrics. Additionally, the middleware plat-
forms have been considered as a black box without considering
the internal implementation. Salhofer et al. [21] have evaluated
the FIWARE platform from an application deployment point of
view. However, no performance and load test has been conducted.
The Transaction Processing Council (TPC), which has developed
industry-standard benchmarks for databases and big data systems,
has introduced TPCx-IoT, a benchmark targeted for IoT gateways.
Cruz et al.[12] give a performance evaluation study of a few existing
middleware platforms. Qualitative and Quantitative metrics have
been proposed to evaluate the performance of the IoT Middleware
platforms. The proposed metrics were tested with five middleware
platforms, namely InatelPlat, Konker, Linksmart, Orion+STH and
Sitewhere. It has been reported that depending on the metrics, the
different middleware platforms performed differently. For example,
in case of low throughput and packet size, Konker and Linksmart
performed better, whereas when error percentage is the priority,
Orion +SSH gives the best performance with less than 1% error rate.
Sitewhere operated well with concurrent users.

In summary, relatively little effort has been given to identifying
IoT application requirements from a benchmarking perspective.
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Moreover, most of research on identifying the application require-
ments have emphasized on architectural requirements[20] of IoT
systems. To the best of our best knowledge, there is no research
at present which captures IoT requirements for generating data to
support benchmarking. Furthermore, a framework that can capture
IoT application requirements and use these to run various testing
scenarios on IoT middleware platforms is missing.In our work, we
identify the application requirements and use these to generate
IoT data that can be used to compare the performance of different
middleware platforms.

6 CONCLUSION AND FUTUREWORK
The ARDG-IoT framework presented in this paper is a step towards
developing an integrated approach for conducting benchmarks and
performance analysis of IoT middleware platforms hosting IoT ap-
plications. We have demonstrated that our framework can take
different configurations of input from the user and can generate
application specific IoT datasets that can be used to conduct bench-
marking and performance analysis of IoT platforms. We validated
the proposed framework using a real-world Industrial IoT appli-
cation use case. The application requirements are captured using
our proposed model, IoTSySML. We also demonstrated that the
proposed framework could capture IoT application requirements
and automatically translate these requirements into IoT data. Fur-
thermore, our proposed framework provides the capability to work
with different IoT middleware platforms which is exemplified by
ingesting the generated data to different IoT middleware platforms.
Hence, based on any application and the requirements they might
have, the proposed framework can be used to select between dif-
ferent middleware platforms and give a view of how they would
perform when we have the actual application running. Currently,
we have used JSON format to send the data to the platforms and
have considered fixed queries for performance analysis. For our
future work, we aim to extend the proposed framework to include
audio/video data stream or data sent in binary format. We also aim
to modify the queries and take into consideration factors like the
richness of queries.
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